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Abstract [6] (which generalize the Fourier series on the Ue

The state estimation problem for bilinear group 31), Our method differs from most previous
stochastic systems evolving on spheres is con- assumed density approximations In that our op

~~I I  sidered . The problem Is motivated by some appli- ~t0~d1mati0n Ii defined on the appropriate compact
• SI cation. Involving rotational processes In tlwee manifold (as opposed to Gaussian approximations

dimensions . Then the theory of harmonic analysis for example, which are defined on Il’s (71) .
on spheres Is used to define assumed density
approximations which result In implementable In Section 2 we discuss some general
suboptimal estimators for the state of the bilinear properties of stochastic bilinear systems end pre-
system, sent an example involvi ng satellite tracking.

The use of harmonic analysis will be motivated by
1. Introduction ‘ the phase tracking exampLe of Willsky (43 in See-

lion 3. In Section 4, we discuss the opdmM
Fourier series analysis has been applied 2

in several recent studies [1]—(4] to estimation estimation problem on the 2—sphere 8 and di.
problems for stochastic processes evolving on :f harmonic analysis to the design of

the circle S . Willsky [4] used Fourier series
E methods to define “assumed density” approxima- 2 • Stochastic Bilinear Systems

tions for certain phase tracking and demodulation
problems . In fact , a system designed using these The basic stochastic bilinear syStem con—
techniques performed better than other estimators • stdered here is described by the Ito stochastic
including an optimal phase—lock loop, differential equation (4] , (9]. (101, 1123, (13],
• [143—(16], (17], (18].

In this paper we study bilinear systems
evolving on spheres (the more general case of
systems evolving on compact Ue groups or homo- dx(t) - (IA, + I ). Q (t)A A Jdt
geneous spaces is discussed in (131). The optimal “ 1F1 ~ ~
estimator is in general infinite dimensiona l (73.
and our approach to th. design of suboptimai d ~estimat or s is a generalization of that of Wh isky + 

—~ A1 w1(t) ,x(t) (1)
(4], whose work ii described in Section 3. The I
basic appr oach involves the definition of an
“assumed d.nilty ” form for the conditional density where x is an n-vector , A1 are n x n matri ces ,
of the system stat, at time I given observations Q is the (i,flth element of Q, and Wi. a Browni—
up to time t. These densi ties are defined via the
techni ques of harmonic analy sis on sphere s [5] an motion (Wiener ) process with strength Q(t)
________ such that E(w(t)w’(s)] — J) Q( )~ Fot-

lowing the notation of (834101, [11] , we define
b
~~
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Then the solution x(tl of (1) wilL evolve on the Tb. obseivatlert modsi considsrsd In this
homogeneous space G’x(O) (I .e., x(t)E Gx(0) for paper consists of Linear observations of di. state
all In 0) in the mean-square sense and almost corrupted by add ltlve white noise , or
sure ly (is]. (16) . 1

dz(t) — H(t)x(t)dt + k9t)dv(t) (7)

t Associated with the Ito squatton (1) is a
sequence of equat ions for the moments of the state where z is a p—v.ctor . R>O. and V Is a Wiener
x(t) , fi rst derived by Brockett (9 3. (10] , 114] . If process • This bilinear system—linear observation

N(n , p) denote s the bI nomial coefficient (
~r’)~ ~~~~~~~ 

usefu l is the st *y certaIn practical

then given an n-vector x , we define x~~ to be the Consider a sateLlite in circular orbit about
N(n . p)-vector with components some celestial body. Because of a variety of

effects including anomalies In the gravitational
,(P \ (P Pj~ (P ’P 1 ._ ~~~~ field of the body, effects of the gravitational

V~ ‘~J’ !~2 ’ %4 p / field s of n.arby bodies, and the effects of iolar
U pressure , the orbit of th. sate llite is perturbed.

p p2 p In this case , the position x of the satellite can
• .x1

1x2 •.  . x ;  p1 — p; p1nO (2) be descri bed by the simplified bilinear model Lie]

(ordered texicographicatly). These components ~~~ ç(t)R1 a

are the monomia ls ( o r  homogeneous polynomials)
j of degree p in X1, . . . . X , th. components of x, ~~~ )

+ L R1dw1(t*X(t) (8)

scei.d so that IIXI~ ” ~~iPi~ Glven a n m x n  Wi J
matr ix A, we denote by the unique matrix where
whichvertfies [o o ol 1 0 0 i •1 Io-i ol

• y — M 4 y 3 A~~~x~~ . (3) R 1 —~ 0 0 _il It
~~

—
~

O 0 01 R
3

11111 0 01
• L0 1 0J ~- 1 0 0 J  L0 0 0J

It is clear diet U x satisfie s the linear differenti al
equation

form a basis for so(3) . the Lie algebra of 3x3 chew-
X(t) - Ax(t) (4) symmetric matrices. Also. f~ are the components

then x~~ also satisf ies a linear differential equa- of the nominal angular velocity end w1 are the

don components of a Wiener process with strength Q(t) .
r If E(x’(O)x(O))” l . then E(x’(t)x(t)]’sl for all t thus

~~~ (t) A1J~3X ~ x evolves on the 2-sphere ~2 (the sane stat ement
can be made almost surely (151.116)). Ws note

• 
• We r.gard this as th. d.fini tion Of A~ ~, which is that th. assumptlon tn (8) th*t the PSitarbadofls

~ 
WI in the angular velocity are white isa simpilfice—

• the infinitesimal version of A”. In fact . A,~ can lion (133 , but the simplified model (B) can teed to

be ii ted fr r171 Br k ~ Ms 
simple but accur ate on-Line trackin g schemes. U

4 eas y compu om ~ ~• O~ 

~ 
we are then given the noisy observatIons (7) of

shown that if x satisfies (1) , then XU satisfies the satellite position, the problem is to estimate
the Ito equation x(t) given the past observations ~t L (a(s) .Ogsst).

dx~~
3 (t) — (A0 + ~ Q (t)A1 A 3 x1

~~(t)dt 3. A Phase Tracking Problem an

~~ i i i  ~ We first discuss a phase traCkIng problem
• ~ 

studied by Bucy, ci at , Ci) and WLlLsky (43, In
+ A x’~~(t)dw (t) (6) which the phase 0 and the observation a are

• 

• 

i(p] described by

• As we shall sea in the sequel , the sequence of deW — s0dt • q1(0d~~~ . ~~~~ (10)

• moment equations is a valuab le tool In the study of
• • state esti mation . dZ(t) — s4n 0(t) dt +  r (I) dv(t) (11)

!Ij 
JIui~

t,
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where v and w at. Independent standard Brownian where
motion processes Independent of the random initial
phase I~. We wish to estimate 0(1) mod2w given cn(t~~~~~E(e_mft (t) Iz(s).Ogs~ t)Lbj t)_Ian(t). (20)

• and we take as our optimal estimation criterion Then the optimal fitter is given by
• the minimization of

• 2
E((l—cos(I(t) — T(t )) Iz(s) , o~ s st1 (12) dc (t) — —(inn0 + ~—Q(t))c~(t)dt

where this notation dinotes the conditional expoc- c
• tation given the c-field a(X(5) , O~~s st) generated + 

n_ i~~~~n+i (t) 
+ 2~ic (t)I m(c1(t)) ~~ (21)

by the observation process up to tim e t.

Noting that we are essentia lly tracking a T(t) — tan 1(a1(t)/b1(t)) . (22)

I point on the unit circLe 8~, we reformuLate the whet. dv(t) dz(t)+2?Im(c1(t))dt .
probLem in Cartesia n coordinates • Let x1 — sin 0(t) ,

The structure of the optimal filter Is that of
*1 - cos 0(t) . Then an Infini te bank of filters , but the equation for

a ft) q(t)d t/2 e0dti~~~(t)dw(~~rx1(óI is coupled only to the filters for c~, c~_ 1. and

~~~(t}[1(e~dt+qê(t)dw(t)) -q(t)d V2 J [ (~ 
c~~1. This fact plays an important part in the
followIng approximation. In order to consIn*ct a(13) finite -dimensional suboptiinal filter , we wish to

• dz(t) — x1(t)dt + rê(t)dv(t) (14) approximate the conditional density (19) by a den-
sity determined by a finite set of parameters .

which are of the bilInear process — linear measure— Following Wilisky (4] , we assume that p(0 ,t) Is a
mont type discussed In Section 2. foLded normal density with mode 11(t) and “variance”

• 
•

In Cartesian coordinates our estimation
problem is to choose an estimate (~1(t ) . (t)) on p(o, t) — E

U--—di. unit circ le. It we use the constrained least
squar es criterion — 1(0: tW . “Ct)) . (23)

2
J 4Zftx 1(t)—~1(O)2+(x2 (t)—x2(t)) Iz(s) .O msgt l (15) The folded normal densit y Is the solution of the

stand ard diffusion equation on the circle (I.e. • it

subject to ~‘
1
2(t)+Z~

2(t)—1 , or equivalentl y subject is the density for S~ Browntan motion processes)

to ~~
(t) — sin 1(t) , (t) — cos 1(t) our criterion and is as important a density on S~ as the normal

reduces to di. criteri on (12) used in (1] and (4]. Is on th is point will be discussed in more de—
One can show CII , (4] that tell in th . next section . In this case, if C

1 
has

- 

A2 been computed and if p($ ,t) satisfies (23) then(
~i(t) . rn)—(x1(t It) .~ (tt1)),4~(tIt)4~t~(uIt) (16) 

°N. 1 can be computed (for any N) from the qua tion
• or

1’(t) thn ’(~1(tlt)/~~(tIt)) (17) • ~~+i — ~~~~~~~~~~~~~ ,
N(N4 l)

0
(N.i) 

(24)

what. the conditional expectation is denoted by Thus the bank of filters described by (21) can be
the equivalent notati ons trunca ted by approximating CN.I ~ 

by (24) and sub-
stituting this approximation into th. equation for

x1(t t)&E(z1(t) a(s) , OIl 5 IIlIgEtCX(%)) . (18) this was don. for N—i In (4], and the result-

I 

•- • As discussed in (1] and (4] , the optima l Ing Fourier coefficient fitter (FCF) was compar ed
(conatr~ln.d least-squares) fIl ter 1. described as to a phase-lock Loop end to the Gustafson-Sp.yer
follows . The conditional probability density of “state-dependent noise filter” (SDNF) (19]. me
0 given (a(s) , 0~ egt ) can be expended In the FCF performed consistentl y better than the other
Fourier series systems , although the SDNF performance was quite

I p(0 t~ — 
~~ 

~1) Ifl0 (19) 
close.
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4. Estimat ion ~~ will refer to a point on ~2 In terms of the Cartesian
coordinates ~ A (x1,x2.x3) cc the polar co~ dtnates

This section Is devoted to the st*dy of the (o.~~ (see the Appendix. in which harmonic analy-
estimation prob lem ~~ the system with the bIlinear i ~~ is summarized) . We first review thestate equation (I) with lb. linear measurement (7) ,

notions of Brownian motion and Gaussian densitieswhere the matrices (A1; 1— 1 ,2 ,3) are given by the 
on homogeneous spaces , which have received much

• 
skew-symmetr ic matrices (R1; isi ,2 ,3 ) of (9). attention in the literature (see [51,1213). Yosida
This system is motivated by the satellite tracking (21] prOved tha t the density p(x , t) of a Browntan
problem of Section 2; as discussed there , the state motion process on a Riemannian homogeneous

x(t) evolves on the 2-sphere ~2 , space M (such as 52) with respect to the Rtaman— 
-
•

niari measure Is the fundamenta l solution of
• The estimation criterion which will be used

for this problem is the constra ined least-square s ~~(~t ,1),’at — G~ p(x, t) — 0 (29)
criterion, which Is ana logous to the criterion dis-
cussed In Section 3 foe the phase estimation prob- where G~ is the formal adj oint of a differential
ion . That is , we s•ek k’(t lt) which minimizes operato r expressible in local coordinates as

J— E((x(t) — ~‘(t~t))’ (x(t) — ~ (t~t)) i4i (25) 0 — ç -+ 

~~~~~~ ~~~~ 
(30)

subject to the ~2 constraint ~~(t I~ 
~2 —

~~(t I U ’~~(t I Q — 1. It Is eastly shown (13] that the wlth constant t an d Q— Q ’  aO. In pertlcular, 1,0
optimal estimate Is is the Laplece-Betrami operator (Laplaclan) on

~~(tI t) — ~(tI t)/I~(t I t ) f l  (26) ~2 (see (A..4)) which is s.lf—adjoint 131. the fianda—
mental solution of

where * denotes conditional expectation given the
- Yap (0.~~,O — 0 (31)0-field generated by th. past observations (see

(18)) . Thus we must compute the conditional cx— 2 Accordwhere Y > 0 , is a Brownlsn motion on Spectation of the state x(t) given the past observa- tog to ~ ], the fundamental solution of (31) is
tions — (a(s) • 0 ss ~ t] . given by

I
The equations for compu ting the conditional

expectation can be derived from the genera l non- p(0,p . t;00.,0,~~ uu E
linear filterin g equation [7 , p. 184] and the moment £ O  m - Z
equation (6) . The resultant equat ions are exp(—I (L+i)(t—t0h) (32)

+1 f Qij (t) A
~~~~

t
~j p ](O~~t 

• -
~ 

Sm g ~) srs die sph rtcat har-
monics of degree £ (defined in (k.2),(A.3)) . The[p]. i ,j — 1

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
funct ion ~~~~~~~~~~~~~ Is the solution to (31)
with Initial condition equal to the singular distil-(27) bution concentrated at (0~~~— ( 00.Q. Also,

dv(t) — dz(t) - H(t)~(tjt )dt . (20) Grenand.r (201 defines a Gaussian (normal) density
to be lb. solution of (29) for some t.I ~ The structure of these equations is quite -

• similar to that of (2 1)——l .e., the estimator consists The folded normal density F(S;1l.y) used by• of an Infinite bank of filters , and di. filter for the Wifisky as en assumed density approximation for
p momen

L 

th t i e  coupled only to those for the first the phase tra cking prob lem Is indeed a normal den-
and (91 1) 5t moments . Therefore , we are led to slty on in the sense of ~~enand.r (4]. Motiva-
the design of subop timal estimators . Motivated by ted by di. success of Wh isky’s subopt imat filter ,

• 

• 

the success of lucy and Wiltsky ’s phase tracking we will design suboptimai estimators for bilinear
• example evolving on Si , we would like to design systems on ~2 

~~ employing a normal assumed

similar techni ques .
suboptimat estimators for the ~2 system using conditiona l density of di. form

.112In our discussion of estimation on ~2 , _~~

• i  k
4

I~
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Y1 (0,q)Y* (i~(t) ,~ (t)) where 
~~~~~ 

!~~:_3 •

. exp(—i(l+ 1)y(t)) (33) The decomposit ion of (k.5) of hosoge~eous

where T(t) • Mt) and y(t) are parameters of the den- polynomials of degree n (restricted to 82) In terms
sity which are to be estimated . In other ~ 

of the spherica l harmonics of degree sn implies
the “ generalized Fourier coefficients ” the existence of a nonsingutar matrix sudi that

c1 (t) —j j  ~~~~~~~ 
,g(t) )p( 0,g. t) sin Od lO g 

— (rjx . rn..z(X), .. . .Y~(~c)1 (41)

where Y1(x) is the (Zg+1)—vec toc whose components
— E (Y*~~(0W ,(tflJ (34) are the spherical harmonics (Y1~~, i’a’iJ of

are assumed ~~ he degree I and I t s  zero or one depending on whether
a Is even or odd . Specia lizing this result to the

c (t) — Y* (~(O L(U).
_
~~~

+l
~~

(t) (35) present approximation implies the existence of a
gm gm nonstngular matr ix such that

In order to assume the existence of the condItional IN+ iJ IN—li’ ’
density, It Is sufficient to assume a technical PN+1X —(Yj~,÷1(x).x 1 (42)
controllability condition [13]. 

*

• • In ceder to truncate the optimal estimator 
can be computsd from

(27) after the Nth equation (for ~~~~~ I t)) using the -(N+ 1) sm ‘Nil)  and ~~~~
1](t it) . The optimal

assumed dens ity (33) , we must compute estimator (27) is truncated by substituting this
• • Et(xIN1(t)x ,(t)], or equivale ntly, ~

(N+l)(t I t) in ~ r~~
0xlmatib.

~ 
for i~

”3(tIt) into lbs equation for

terms of~~~
3(tIt) , p — 1,2 , .. , N. However , if x (lit) .

-~ 
• x(t it ) is known , so are c (I) and c (t) , and a
• 10 11 We note that one can show that

simple computation yIelds ______

2 ~~~ £ /IJ i(t It) ~ (43)

• v(t) — _*lo4~~(cl0(t )+2t c~~(Ol 2)] (36) aM this quantity can be used as a measure of
2 2 ~ our confidenas in our estimate. SpecilceUp if

cos “W — c10W/[c10(t )+2 1c11(t) I 1 (37) ~(t I t) satisfies die assumed density (33) ,

3: sin n(t) — *Ii”Ic~ ~(t) i/(c~0(t).2 Ic~ ~~ 
23ê (38) aCt) — I~(t lup — (44)

s o y —  0 (zero vartance ’) ImplIes s— 1, and
If c11(t) — 0, then the density is Independent of — . (infinite ‘varIance”) Implies a— 0 (i.e [41
i(t); otherwise , 

• 
for the 8~ alog) .

.xp(2fl(t)) — 11(t)/c11(t) (39) Examnler Suppose that we tr uncate the

Then ~~~~~ m’ m— — (N + 1) , . . . ,N+ i ) c an be com- opti :na1 S2 esth~ator (27) af ter N— 1—i.e. , we

put.d from approximate x (t i t) using the above approxlma-
lion. The resulting suboptlmat estimator Is (for

CN+l m(t) — ~~~ i ,m(*t) s ?~
(t))IxP(_(N+l)OI+2)Y(t)) Q(t) — I)

• _ (_~~)
in ~ j  C10(U 

~~ dx(t(t) .— + ~

0 N+1.m~ (02 (Q+21c (t)12)3)
10 ii + P(tlWft)R 1(133dz2(t) — N(t)3~(tI t)dt3 (45)

(CJ1 (1)\ m~’2[~1,2  1) 2 2 ~* (N+i)(N+2) where lbs “covariance” matrix P(t) is given by

~c~~(t)/ L~ ‘ 
lc~~(t)i )i (40)

1•~ 
S
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• 

P11(t) — ~~~(t It )(}II~~(tIt) fl 
— 1) (1) the restriction S 4—.lJlse subsp.cs of £

- 1(x2(tIt)+~~(t I t )) H~(t tt ) fl  + (46) which is orthogonal to the subspac. ((x~+ z s x ~)
~ 1 3 .f(xi,...,x3)I fE~~ _2);I for I~~ j . I p lk , J p Ik , and 

2
~ . * 

(2) the eigenspace of the Laplacian a 2 co8
— x1(t lt )x,(t lt ) (IIx(t lt ) iI - ‘) with eigenvalue — 1( 1.)), where (9]

for ~~ J. Notice that , from (44) , ij x(tIt ) I~ — 1 tin— a a2
plies th at the “variance ” ‘p(t) .— 0; in fact , if 6 2 ~j~j  ~j (sInl~~ )+ j~j  —y . (A.4)r~(t it) r — i , we see from (46)—(47) tha t the co- 8 ~

i r m~~~1? ~~~~~~~~~~~~~ 
~~1~~s 1~ ~~~per ty (1) implIes that each fE has a unique

susies that it has perfect knowledge of x(d an 1 expansion .~~disregards the measurements • 2 
S

S. Conclusion 5)

In this paper we have considered the esti- where f1~~~EH1 23  and It] Is th. lar gest Integ er
matien problem for bilinear stochastic systems 

~ t (Brockett (9] also discusses this point) . Oneevolving on spheres. Th. techniques of harmonic can show (22 ,, p. 109] that the span of (Hanalysis have been applied to the design of sub- I
• optimal estimators for such systems. The per- £“ 1 ,2 , .. .)  is dense in the space of continuous

formarice of these estimators Is presently being functions on ~2 and in L ($2), 1 Sp .c —•• investigated by means of compu ter simulation , and p
the results will be presented In a fu ture paper .

Appendix - Harmonic Analysis on
4. I.$. ~~~~~. C. e.o,. i.e. 0.. . 0. M.0. 00.0. IIS~~~~.•~~~~~~~~~ . Os. **~4. )44.

a I. n:—..,... ~~. 0.. ~. ~0.IE u,Mfll0. ~~~0, 050.1 O.. ~~~~~_.-Any point ~ ,x. ,x., on the &-spuere
• ~ • - 1 ~ 5. 5.1. ILM. ..L J.. u.S. 0.v~~~ S T.  ~~m.

2 3 ,• S (XE II Ix x — 1) can be expressed in the polar •. s.s. WISIE?. 5. OIuw. 0 gao,o a, co. ~~* t r  . ~• coordinates (I~~), where 05$ se, Os, s2n, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
b d ft I 5. i.~~. ISO. p ,s.. po.o, piosa, ua,. so, iso.y e S. 5.5. TISo, ~~~ ~~~~ I5q.p.O fr~0.. ~~~~~~ ISIS.

• ~. £5. k~~~~~. ~~~~~ •~ “— ~~ ~~~~~~ - oo . so. as’s.• —
• 

• x1 — cost ; x2 — sin t cosg; x3 — siutsing . (A.l) 
,• :- 

2 t”UTJ ’ 00 ~~~~~~~- 5.0. M.s’. 0lW. 0O,S. Na .. 0MM 0..
Harmonic analysis on $ Is studied In terms of the a.. sw a ,u.. 

~~~~~~~ cout .p ., 0 ~~~~~~~~~~~~ j • ~~~~ • -— .

spherica l harmonics (63 ,(22],(23); the normalized ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~00500. ~—,0s CM.,l MMuMoao 5uto.~ so. ~~~. ~~~~• 5 .., SI ~~4S. 0.. SIPs. ‘fl-Os .s~~~rLcas ~arm~~.cs o agree . on are e ,~ ~~ ~~~~~~~ .~~ ~~~~~ ~~~ $a, ~~u . o. so., s coo• ~ 1 1 ___________________________
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